INTRODUCTION

General Block Diagram of an Analog-Digital Converter

- Prefilter - Avoids the aliasing of high frequency signals back into the baseband of the ADC
- Sample-and-hold - Maintains the input analog signal constant during conversion
- Quantizer - Finds the subrange that corresponds to the sampled analog input
- Encoder - Encoding of the digital bits corresponding to the subrange
Nyquist Frequency Analog-Digital Converters

The sampled nature of the ADC places a practical limit on the bandwidth of the input signal. If the sampling frequency is f_S, and f_B is the bandwidth of the input signal, then

$$f_B < 0.5f_S$$

which is simply the Nyquist relationship which states that to avoid aliasing, the sampling frequency must be greater than twice the highest signal frequency.

Classification of Analog-Digital Converters

Analog-digital converters can be classified by the relationship of f_B and $0.5f_S$ and by their conversion rate.

- **Nyquist ADCs** - ADCs that have f_B as close to $0.5f_S$ as possible.
- **Oversampling ADCs** - ADCs that have f_B much less than $0.5f_S$.

Classification of Analog-to-Digital Converter Architectures

<table>
<thead>
<tr>
<th>Conversion Rate</th>
<th>Nyquist ADCs</th>
<th>Oversampled ADCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>Integrating (Serial)</td>
<td>Very high resolution <14-16 bits</td>
</tr>
<tr>
<td>Medium</td>
<td>Successive Approximation 1-bit Pipeline Algorithmic</td>
<td>Moderate resolution <10-12 bits</td>
</tr>
<tr>
<td>Fast</td>
<td>Flash Multiple-bit Pipeline Folding and interpolating</td>
<td>Low resolution < 6-8 bits</td>
</tr>
</tbody>
</table>
STATIC CHARACTERIZATION OF ANALOG-TO-DIGITAL CONVERTERS

Digital Output Codes

Digital Output Codes used for ADCs

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Thermometer</th>
<th>Gray</th>
<th>Two’s Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>00000000</td>
<td>000</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>00000001</td>
<td>001</td>
<td>111</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>00000111</td>
<td>011</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>00011111</td>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>00111111</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>01111111</td>
<td>111</td>
<td>011</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>11111111</td>
<td>101</td>
<td>010</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>11111111</td>
<td>100</td>
<td>001</td>
</tr>
</tbody>
</table>

Input-Output Characteristics

Ideal input-output characteristics of a 3-bit ADC

Figure 10.5-3 Ideal input-output characteristics of a 3-bit ADC.
Definitions

- The dynamic range, signal-to-noise ratio (SNR), and the effective number of bits (ENOB) of the ADC are the same as for the DAC.
- **Resolution** of the ADC is the smallest analog change that distinguishable by an ADC.
- **Quantization Noise** is the ±0.5 LSB uncertainty between the infinite resolution characteristic and the actual characteristic.
- **Offset Error** is the difference between the ideal finite resolution characteristic and actual finite resolution characteristic.
- **Gain Error** is the difference between the ideal finite resolution characteristic and actual finite resolution characteristic measured at full-scale input. This difference is proportional to the analog input voltage.

Integral and Differential Nonlinearity

The integral and differential nonlinearity of the ADC are referenced to the vertical (digital) axis of the transfer characteristic.

- **Integral Nonlinearity (INL)** is the maximum difference between the actual finite resolution characteristic and the ideal finite resolution characteristic measured vertically (% or LSB).
- **Differential Nonlinearity (DNL)** is a measure of the separation between adjacent levels measured at each vertical step (% or LSB).

$$DNL = (D_{cx} - 1) \text{ LSBs}$$

where D_{cx} is the size of the actual vertical step in LSBs.

Note that **INL** and **DNL** of an analog-digital converter will be in terms of integers in contrast to the **INL** and **DNL** of the digital-analog converter. As the resolution of the ADC increases, this restriction becomes insignificant.
Example of INL and DNL

![Graph of INL and DNL](image)

Note that the DNL and INL errors can be specified over some range of the analog input.

Monotonicity

A *monotonic* ADC has all vertical jumps positive. Note that monotonicity can only be detected by DNL.

Example of a nonmonotonic ADC:

![Graph of Monotonicity](image)

If a vertical jump is 2LSB or greater, missing output codes may result. If a vertical jump is -1LSB or less, the ADC is not monotonic.
Example 360-1 - INL and DNL of a 3-bit ADC

Find the INL and DNL for the 3-bit ADC shown on the previous slide.

Solution

With respect to the digital axis:

1.) The largest value of INL for this 3-bit ADC occurs between 3/16 to 5/16 or 7/16 to 9/16 and is 1 LSB.

2.) The smallest value of INL occurs between 11/16 to 12/16 and is -2 LSB.

3.) The largest value of DNL occurs at 3/16 or 6/8 and is +1 LSB.

4.) The smallest value of DNL occurs at 9/16 and is -2 LSB which is where the converter becomes nonmonotonic.

DYNAMIC CHARACTERISTICS OF ADCs

What are the Important Dynamic Characteristics for ADCs?

The dynamic characteristics of ADCs are influenced by:

- Comparators
 - Linear response
 - Slew response
- Sample-hold circuits
- Circuit parasitics
- Logic propagation delay
Comparator

The comparator is the quantizing unit of ADCs.

Open-loop model:

![Comparator Diagram](image)

Nonideal aspects:
- Input offset voltage, V_{OS} (a static characteristic)
- Propagation time delay
 - Bandwidth (linear)
 \[
 A_v(s) = \frac{A_v(0)}{s \tau_e + 1}
 \]
 - Slew rate (nonlinear)
 \[
 \Delta T = \frac{C \cdot \Delta V}{I} \quad (I \text{ constant}) = \frac{\Delta V}{\text{Slew Rate}}
 \]

SAMPLE AND HOLD CIRCUITS

Requirements of a Sample and Hold Circuit

The objective of the sample and hold circuit is to sample the unknown analog signal and hold that sample while the ADC decodes the digital equivalent output.

The sample and hold circuit must:

1.) Have the accuracy required for the ADC resolution, i.e. accuracy $= \frac{100\%}{2^N}$

2.) The sample and hold circuit must be fast enough to work in a two-phase clock. For an ADC with a 100 Megasample/second sample rate, this means that the sample and hold must perform its function within 5 nanoseconds.

3.) Precisely sample the analog signal at the same time for each clock. An advantage of the sample and hold circuit is that it removes the precise timing requirements from the ADC itself.

4.) The power dissipation of the sample and hold circuit must be small. Unfortunately, the above requirements for accuracy and speed will mean that the power must be increased as the bits are increased and/or the clock period reduced.
Sample-and-Hold Circuit

Waveforms of a sample-and-hold circuit:

Definitions:
- *Acquisition time* \((t_a)\) = time required to acquire the analog voltage
- *Settling time* \((t_s)\) = time required to settle to the final held voltage to within an accuracy tolerance

\[T_{\text{sample}} = t_a + t_s \]

\[\text{Maximum sample rate} = f_{\text{sample}}(\text{max}) = \frac{1}{T_{\text{sample}}} \]

Other considerations:
- *Aperture time* = the time required for the sampling switch to open after the S/H command is initiated
- *Aperture jitter* = variation in the aperture time due to clock variations and noise

Types of S/H circuits:
- No feedback - faster, less accurate
- Feedback - slower, more accurate

Open-Loop, Buffered S/H Circuit

Circuit:

Attributes:
- Fast, open-loop
- Requires current from the input to charge \(C_H\)
- DC voltage offset of the op amp and the charge feedthrough of the switch will create dc errors
Settling Time

Assume the op amp has a dominant pole at \(-\omega_d\) and a second pole at \(-GB\).

The unity-gain response can be approximated as,

\[A(s) \approx \frac{GB^2}{s^2 + GB \cdot s + GB^2} \]

The resulting step response is,

\[v_{out}(t) = 1 - \left(\frac{4}{3} e^{-0.5GB \cdot t} \right) \sin \left(\sqrt{\frac{3}{4} GB \cdot t} + \phi \right) \]

Defining the error as the difference between the final normalized value and \(v_{out}(t)\), gives,

\[\text{Error}(t) = \epsilon = 1 - v_{out}(t) = \sqrt{\frac{4}{3}} e^{-0.5GB \cdot t} \]

In most ADCs, the error is equal to \(\pm 0.5\) LSB. Since the voltage is normalized,

\[\frac{1}{2N+1} = \sqrt{\frac{4}{3}} e^{-0.5GB \cdot t_s} \quad \rightarrow \quad e^{-0.5GB \cdot t_s} = \frac{4}{\sqrt{3}} 2^N \]

Solving for the time, \(t_s\), required to settle with \(\pm 0.5\) LSB from the above equation gives

\[t_s = \frac{2}{GB} \ln \left(\frac{4}{\sqrt{3}} 2^N \right) \approx \frac{1}{GB} [1.3863N + 1.6740] \]

Thus as the resolution of the ADC increases, the settling time for any unity-gain buffer amplifiers will increase. For example, if we are using the open-loop, buffered S/H circuit in a 10 bit ADC, the amount of time required for the unity-gain buffer with a \(GB\) of 1MHz to settle to within 10 bit accuracy is 2.473 \(\mu s\).

Open-Loop, Switched-Capacitor S/H Circuit

Circuit:

- Delayed clock used to remove input dependent feedthrough.
- Differential version has lower PSRR, cancellation of even harmonics, and reduction of charge injection and clock feedthrough
Open-Loop, Diode Bridge S/H Circuit

Diode bridge S/H circuit:

\[\text{Sample phase - diodes forward biased.} \]

\[\text{Hold phase - diodes reversed biased.} \]

MOS diode bridge S/H circuit:

\[\text{Sample phase - MOS diodes forward biased.} \]

\[\text{Hold phase - MOS diodes reversed biased.} \]

Practical Implementation of the Diode Bridge S/H Circuit

Practical implementation of the diode bridge sample and hold (sample mode).

During the hold mode, the diodes D5 and D6 become forward biased and clamp the upper and lower nodes of the sampling bridge to the sampled voltage.
Closed-Loop S/H Circuit

Circuit:

![Diagram of Closed-Loop S/H Circuit](image1)

Closed-loop S/H circuit. ϕ_1 is the sample phase and ϕ_2 is the hold phase.

Fig.10.5-13

Attributes:

- Accurate
- First circuit has signal-dependent feedthrough
- Slower because of the op amp feedback loop

Closed-Loop, Switched Capacitor S/H Circuits

Circuit:

![Diagram of Closed-Loop, Switched Capacitor S/H Circuits](image2)

Switched capacitor S/H circuit which autozeros the op amp input offset voltage.

A differential version that avoids large changes at the op amp output

Attributes:

- Accurate
- Signal-dependent feedthrough eliminated by a delayed clock
- Differential circuit keeps the output of the op amps constant during the ϕ_1 phase avoiding slew rate limits
Current-Mode S/H Circuit

Circuit:

![Current-Mode S/H Circuit Diagram](image)

Attributes:
- Fast
- Requires current in and out
- Good for low voltage implementations

Aperture Jitter in S/H Circuits

Illustration:

If we assume that \(v_{in}(t) = V_p \sin \omega t \), then the maximum slope is equal to \(\omega V_p \).

Therefore, the value of \(\Delta V \) is given as

\[
\Delta V = \left| \frac{dv_{in}}{dt} \right| \Delta t = \omega V_p \Delta t.
\]

The rms value of this noise is given as

\[
\Delta V_{\text{rms}} = \left| \frac{dv_{in}}{dt} \right| \Delta t = \frac{\omega V_p \Delta t}{\sqrt{2}}.
\]

The aperture jitter can lead to a limitation in the desired dynamic range of an ADC. For example, if the aperture jitter of the clock is 100ps, and the input signal is a full scale peak-to-peak sinusoid at 1MHz, the rms value of noise due to this aperture jitter is 111\(\mu \)V(rms) if the value of \(V_{\text{REF}} \) = 1V.
DESIGN OF A SAMPLE AND HOLD AMPLIFIER

Specifications
- Accuracy = 10 bits
- Clock frequency is 10 MHz
- Power dissipation ≤ 1mW
- Signal level is from 0 to 1V
- Slew rate ≥ 100V/μs with $C_L = 1\text{pF}$
- Use 0.25μm CMOS

Technology Parameters ($C_{ox} = 60.6 \times 10^{-4} \text{F/m}^2$):

<table>
<thead>
<tr>
<th>Parameter Symbol</th>
<th>Parameter Description</th>
<th>Typical Parameter Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{T0}</td>
<td>Threshold Voltage ($V_{BS} = 0$)</td>
<td>0.5± 0.15, -0.5 ± 0.15</td>
<td>V</td>
</tr>
<tr>
<td>k'</td>
<td>Transconductance Parameter (in saturation)</td>
<td>120.0 ± 10%, 25.0 ± 10%</td>
<td>$\mu A/V^2$</td>
</tr>
<tr>
<td>γ</td>
<td>Bulk threshold parameter</td>
<td>0.4, 0.6</td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>Channel length modulation parameter</td>
<td>0.32 ($L = L_{min}$), 0.06 ($L \geq 2L_{min}$)</td>
<td>$\mu A/V$</td>
</tr>
<tr>
<td>$2</td>
<td>\phi_F</td>
<td>$</td>
<td>Surface potential at strong inversion</td>
</tr>
</tbody>
</table>

Op Amp Design

Gain:

$$\text{Gain error} = \frac{1}{1+\text{Loop Gain}} \leq 0.5 \text{ LSB} = \frac{1}{2^{11}}$$

Therefore, the op amp gain ≥ 2$^{11} = 2048 \text{ V/V}$

Choose the op amp gain as ≥ 5000 V/V

Gainbandwidth:

For a dominant pole op amp with unity-gain feedback, the relationship between the gain-bandwidth (GB), accuracy (N) and speed (t_s) is

$$t_s = \frac{N+1}{GB} ln(2) = 0.693 \left(\frac{N+1}{GB} \right)$$

Therefore, if $t_s \leq 0.5 T_{clock} = 50 \text{ ns}$ (choose $t_s = 10 \text{ ns}$). For $N = 10$, the gain-bandwidth is

$$GB = 0.762 \times 10^9 = 120 \text{ MHz}$$

Dominant pole is 24 kHz and with an output capacitance of 1pF this means the output resistance of the op amp must be ≥ 6.6 MΩ.
Op Amp Design – Continued

The previous specifications suggest a self-compensated op amp. The gain and output resistance should be easy to achieve with a cascaded output. A folded-cascode op amp is proposed for the design. In order to have the 0-1V signal range, a p-channel, differential input is selected. This will give the input 0-1V range. The output will effectively be 0-1V with the unity gain feedback around the op amp.

Bias Currents:
The 100V/μs slew rate requires $I_3 = 100μA$. Setting $I_4 = I_5 = 125μA$ gives a power dissipation of 0.875mW with $V_{DD} = 2.5V$.

Transistor sizes:
Design M4-M7 to give a saturation voltage of 0.1V with 125μA.

\[
\frac{W_4}{L_4} = \frac{W_5}{L_5} = \frac{W_6}{L_6} = \frac{W_7}{L_7} = \frac{2I_D}{K_n \cdot V_{DS\text{sat}}^2} = 2.125
\]

Since the upper swing is not as important, choose a saturation voltage of 0.25 for M8 – M11.

\[
\frac{W_8}{L_8} = \frac{W_9}{L_9} = \frac{W_{10}}{L_{10}} = \frac{W_{11}}{L_{11}} = \frac{2I_D}{K_p \cdot V_{DS\text{sat}}^2} = \frac{2 \cdot 125}{25 \cdot 0.0625} = 160
\]

To get the GB of 120 MHz, this implies the g_m of M1 and M2 is

\[
g_m = GB \cdot C_L = (120 \times 10^6 \cdot 2\pi) (10^{-12}) = 762 \mu S
\]

\[
\frac{W_1}{L_1} = \frac{W_2}{L_2} = \frac{g_m^2}{2I_D K_p} = \frac{762 \cdot 762}{2 \cdot 25 \cdot 50} = 232
\]

Let the upper input common mode voltage be 1.5V which gives the W/L of M3 as,

\[
1V = V_{SG1} + V_{SD3} = 0.631 + V_{SD3} \Rightarrow V_{SD3} = 0.369V \Rightarrow \frac{W_3}{L_3} \approx 60
\]
Op Amp Design – Continued

We now need to check the output resistance and the gain to make sure the specifications are satisfied. Let us choose twice minimum channel length to keep the capacitive parasitics minimized and not have the output resistance too small. Therefore at quiescent conditions,

\[r_{ds5} = 133 \, \Omega, \quad r_{ds7} = 222 \, \Omega, \quad g_m7 = 1.935 \, \text{mS} \text{ and } \quad r_{ds2} = 250 \, \text{k} \Omega \]

\[\therefore \quad R_{\text{outdown}} \approx (r_{ds5}||r_{ds2})g_m7r_{ds7} = 37.29 \, \text{M} \Omega \]

\[r_{ds9} = r_{ds11} = 167 \, \text{k} \Omega, \text{ and } \quad g_{m11} = 1.697 \, \text{mS} \]

\[\therefore \quad R_{\text{outup}} \approx r_{ds11}g_{m9}r_{ds9} = 47.33 \, \text{M} \Omega \]

\[\therefore \quad R_{\text{out}} \approx 20.86 \, \text{M} \Omega \]

The low frequency gain is,

\[A_v \approx g_m1R_{\text{out}} \]

\[= 762 \, \mu \text{S} \cdot 20.86 \, \text{M} \Omega = 15,886 \, \text{V/V} \]

The frequency response will be as shown:

[Diagram showing frequency response with gain, 24kHz to 120MHz, and log10(f) on the y-axis.

Op Amp Bias Voltages

We also need to design the bias voltages \(V_{NB1}, V_{NB2}, V_{PB1} \) and \(V_{PB2} \). This can be done using the following circuit:

Note, the W/L of M3, M4 and M7 will be 6 so that a current of 10\(\mu \)A gives 100\(\mu \)A in M3 of the op amp. Also, W/L of M1 and M5 will be 16 so a current of 10\(\mu \)A gives 125\(\mu \)A in M4 and M5 of the op amp.

If M2 is 4 times larger than M1, which gives a W/L of 64 for M2. Under these conditions,

\[I_2 = I_1 = \frac{1}{2\beta_1 R^2} \implies R = \frac{10^6}{2 \cdot 120 \cdot 16 \cdot 10} = 5.1 \, \text{k} \Omega \]

The extra 40\(\mu \)A brings the power dissipation to 0.975mW which is still in specification.

The W/L of M6 and M8 are designed as follows:

\[V_{GS8} = V_T + 2V_{ON} \implies V_{GS8} - V_T = 0.2V = \sqrt{\frac{2 \cdot 10}{120 \cdot (W_8/L_8)}} \implies \frac{W_8}{L_8} = 4.167 \]

\[V_{SG6} = |V_T| + 2V_{ON} \implies V_{SG6} - |V_T| = 0.5V = \sqrt{\frac{2 \cdot 10}{25 \cdot (W_6/L_6)}} \implies \frac{W_6}{L_6} = 3.20 \]
Switch and Hold Capacitor Design

Switch:
Since the signal amplitude is from 0 to 1V, a single NMOS switch should be satisfactory. The resistance of a minimum size NMOS switch is,

$$R_{ON}(\text{worst case}) \approx \frac{1}{K_n(W/L)(V_{GS}-V_T)} = \frac{10^6}{120(1)(1.5-0.5)} = 8.33k\Omega$$

For a $C_H = 1\text{pf}$, the time constant is 8 ns. This is too close to the 50 ns so let us increase the switch size to $0.5\mu m/0.25\mu m$ which gives a time constant of 4ns.

Therefore, the W/L ratio of the NMOS switch is $0.5\mu m/0.25\mu m$ and the hold capacitor is 1pf.

Check the error due to channel injection and clock feedthrough-
If we assume the clock that rises and falls in 1ns, then a $0.5\mu m/0.25\mu m$ switch works in the fast transition region. The channel/clock error can be calculated as:

$$V_{error} = -\left(\frac{W \cdot CGDO}{2 C_L} + \frac{C_{channel}}{2 C_L}\right) \left(V_{HT} - \frac{\beta V_{HT}^3}{6 U \cdot C_L}\right) - \frac{W \cdot CGDO}{C_L} (V_S + 2V_T - V_L)$$

Assuming $CGDO$ is $200 \times 10^{-12} \text{ F/m}$ we can calculate V_{HT} as $0.8131V$. Thus,

$$V_{error} = -\left(\frac{100 \times 10^{-18} + 0.5(7.57 \times 10^{-16})}{1 \times 10^{-12}}\right) \left(0.8131 - \frac{0.105 \times 10^{-3}}{15 \times 10^{-3}}\right) - \frac{100 \times 10^{-18}}{1 \times 10^{-12}} (1 + 1 - 0) = -0.586mV$$

For a 1volt signal with 10 bit accuracy, the error must be less than 1LSB which is $0.967mV$. The channel/clock error is close to this value and one may have to consider using a CMOS switch or a dummy switch to reduce the error.
Design Summary

At this point, the analog designer understands the weaknesses and strengths of the design. The next steps will not be done but are listed below:

1.) Simulation to confirm and explore the hand-calculated performance
2.) Layout of the op amp, hold capacitor and switch.
3.) Verification of the layout
4.) Extraction of the parasitics from the layout
5.) Resimulation of the design.
6.) Check for sensitivity to ESD and latchup.
7.) Select package and include package parasitics in simulation.

SUMMARY

- An ADC is by nature a sampled data circuit (cannot continuously convert analog into digital)
- Two basic types of ADCs are:
 - Nyquist – analog bandwidth is as close to the Nyquist frequency as possible
 - Oversampled – analog bandwidth is much smaller than the Nyquist frequency
- The active components in an ADC are the comparator and the sample and hold circuit
- A sample and hold circuit must have at least the accuracy of 100%/2^N
- Sample and hold circuits are divided into two types:
 - Open loop which are fast but not as accurate
 - Close loop which are slower but more accurate
- An example of designing a sample and hold amplifier was given to illustrate the electrical design process for CMOS analog circuits